ASGE guideline on screening for pancreatic cancer in individuals with genetic susceptibility: summary and recommendations

Mandeep S. Sawhney, MD, MS, FASGE,1,* Audrey H. Calderwood, MD, MS, FASGE,2,* Nirav C. Thosani, MD, MHA,3 Timothy R. Rebbeck, PhD,4 Sachin Wani, MD, FASGE,5 Marcia I. Canto, MD, MHS,6 Douglas S. Fishman, MD, FAAP, FASGE,7 Talia Golan, MD,8 Manuel Hidalgo, MD, PhD, MSc,9 Richard S. Kwon, MD,10 Douglas L. Riegert-Johnson, MD,11 Dushyant V. Sahani, MD,12 Elena M. Stoffel, MD, MPH,10 Charles M. Vollmer, Jr, MD,13 Bashar J. Qumseya, MD, MPH, FASGE, (ASGE Standards of Practice Committee Chair)14

Prepared by: ASGE STANDARDS OF PRACTICE COMMITTEE

This document was reviewed and approved by the Governing Board of the American Society for Gastrointestinal Endoscopy.

Pancreatic cancer is a rare but lethal cancer with a lifetime incidence of approximately 1.6% and 5-year survival of 10%. Pancreatic cancer accounts for 3% of all newly diagnosed cancers and 8% of all cancer-related deaths in the United States in 2020, and the incidence is anticipated to rise over the next decade. Biologically aggressive behavior, advanced stage at the time of diagnosis, and poor response to oncologic therapies have been proposed as reasons for dismal outcomes in pancreatic cancer.

Diagnosis at earlier stages of disease is associated with improved survival, with 93% 10-year survival among stage 0 cancers and 34% to 39% 5-year survival among stage I cancers. However, by the time patients develop symptoms, almost 80% have advanced disease that is inoperable. In 2019, the U.S. Preventive Services Task Force reaffirmed their earlier guidelines by continuing to recommend against screening for pancreatic cancer in average-risk adults. This decision was based in part on the low incidence of pancreatic cancer in the general population. Importantly, the U.S. Preventive Services Task Force specifically stated that those recommendations did not apply to high-risk populations because of inherited genetic susceptibility. Although other guidelines have provided recommendations for individuals with genetic susceptibility, those guidelines have relied primarily on consensus of expert opinion.

The aim of this American Society for Gastrointestinal Endoscopy (ASGE) guideline is to provide evidence-based recommendations on screening for pancreatic cancer in individuals with genetic susceptibility. Although pathogenic germline variants in several genes have been associated with increased risk for pancreatic cancer, these guidelines focus on BRCA1 and BRCA2 because of their higher prevalence in the population. Familial pancreatic cancer (FPC) kindreds were defined as kindreds containing at least a pair of first-degree relatives with pancreatic cancer without an association with a known hereditary cancer syndrome. Modeling studies strongly suggest autosomal-dominant inheritance of a rare allele as the likely etiology. Furthermore, most pancreatic cancer screening studies included those with FPC syndrome, and therefore we made screening recommendations for these individuals. Recommendations made in these guidelines should be used in the context of the individual patient and clinical setting, such that the ultimate decision regarding pancreatic cancer screening should be made with consideration of patient values, preferences, and availability of local expertise.
METHODS

This document was prepared by the Standards of Practice Committee of the ASGE and was conceptualized and conducted according to the Grading of Recommendations Assessment, Development and Evaluation (GRADE). Evidence was presented to a panel of experts representing various stakeholders including oncology, radiology, genetics, epidemiology, and gastroenterology. Two patient advocates were also included. All panel members were required to disclose potential financial and intellectual conflicts of interest, which were addressed according to ASGE policies. In developing these recommendations, we took into consideration the certainty in the evidence, benefits and harms of different management options, feasibility, patient values and preferences, resources utilization, cost-effectiveness, and health equity. The final wording of the recommendations including direction and strength were approved by all members of the panel and the ASGE governing board. Stronger recommendations are typically stated as “we recommend...,” whereas weaker recommendations are indicated by phrases such as “we suggest...”.

These guidelines addressed the following clinical questions using the GRADE format:

1. Should individuals at increased risk of pancreatic cancer because of genetic susceptibility undergo screening for pancreatic cancer?
2. Should individuals at increased risk of pancreatic cancer because of genetic susceptibility undergo screening with endoscopic ultrasound EUS or magnetic resonance imaging (MRI)?
3. (a) Should individuals with the BRCA2 pathogenic variant undergo screening for pancreatic cancer?
(b) Should individuals with the BRCA1 pathogenic variant undergo screening for pancreatic cancer?

Relevant clinical outcomes included all-cause mortality, pancreatic cancer mortality, overall yield of screening, detection of surgically resectable and borderline-resectable pancreatic cancer, psychological benefits, and harms. Yield of screening was defined as detection of any high-risk lesions, pancreatic cancer, high-grade dysplasia, and grade III pancreatic intraepithelial neoplasia. Surgically resectable and borderline-resectable pancreatic lesions were defined as any T1-3 and N0-2 pancreatic cancer, high-grade dysplasia, or grade III pancreatic intraepithelial neoplasia. Surgically resectable and borderline-resectable pancreatic lesions were defined as any T1-3 and N0-2 pancreatic cancer, high-grade dysplasia, or grade III pancreatic intraepithelial neoplasia. Harms were defined as harms from screening tests, rates of low-yield pancreatic surgery in the screened population, and rates of adverse events from pancreatic cancer surgery resulting from positive screening tests. For the purposes of this document, pancreatic cancer refers to pancreatic ductal adenocarcinoma.

This guideline also addressed the frequency of and starting age at screening using a non-GRADE format for individuals with the following genetic susceptibility conditions: FPC, familial atypical multiple mole melanoma (FAMMM), syndrome, Peutz-Jeghers syndrome, ataxia telangiectasia due to mutation in the ataxia telangiectasia mutated (ATM) gene, Lynch syndrome, and hereditary pancreatitis. In making these recommendations, the panel considered available literature and existing guidelines.

SUMMARY OF RECOMMENDATIONS

Details of our literature searches, data analyses, pooled effect estimates, evidence profiles, forest plots, and panel deliberation for each outcome can be found in the methodology and technical review document (this issue). A summary of our final recommendations for screening patients at high risk of pancreatic cancer are listed in Table 1.

Question 1: Should individuals at increased risk of pancreatic cancer because of genetic susceptibility undergo screening for pancreatic cancer?

Recommendation 1. In individuals at increased risk of pancreatic cancer because of genetic susceptibility, we suggest screening for pancreatic cancer compared with no screening (conditional recommendation, low quality of evidence).

Summary of evidence. For this question, we performed a systematic review and meta-analysis. Our search identified 25 studies for inclusion. These studies included individuals with FPC, Peutz-Jeghers syndrome, FAMMM, and Lynch syndrome as well as those with BRCA1, BRCA2, ATM, and PALB2 pathogenic variants. Outcomes of interest were all-cause mortality, yield of screening for high-risk lesions, yield of screening for resectable and borderline-resectable lesions, and harms from screening.

We did not find any clinical trials that compared outcomes of screen-detected pancreatic cancers with a control group of patients who did not undergo screening. Two studies compared outcomes of screen-detected pancreatic cancers with historic control subjects and found improved survival in screen-detected pancreatic cancer. One study found that 3-year survival was significantly higher in screen-detected cancers when compared with individuals with symptomatic cancers who were noncompliant with screening (85% vs 25%).

For the outcome of cumulative yield of screening for high-risk lesions, our analysis showed a pooled yield of 3.1% (95% confidence interval [CI], 2.2%-4.3%; $P = .02$, $I^2 = 40.5$). For resectable and borderline-resectable lesions, the pooled yield was 2.1% (95% CI, 1.4%-3.1%; $P = .007$ and $I^2 = 45.6$). The proportion of screen-detected cancers that were resectable or borderline-resectable was 60.0% (95% CI, 43.7%-74.4%; $P = .51$ and...
Population-based data show that only 20% of symptomatic cancers were diagnosed when they were resectable or borderline-resectable, whereas 30% were locally advanced and 50% were metastatic.8 This suggests that screening was associated with a substantial shift because almost 2 of 3 screen-detected pancreatic cancers were resectable or borderline-resectable.

Among included studies, no adverse events were reported because of screening EUS or MRI. Although EUS and MRI were safe, these tests can be costly and may result in overdiagnosis.

Considering all patients who underwent screening for pancreatic cancer, in 22 studies, the pooled rate of low-yield pancreatic surgery was low at 2.8% (95% CI, 1.9%-4.1%; $P = .003$ and $I^2 = 51.4$). Low-yield surgery was defined as surgery that did not yield cancer, high-grade dysplasia, or grade III pancreatic intraepithelial neoplasia. However, among 181 patients who had pancreatic surgery as a result of screening, the pooled proportion of low-yield surgery was high at 46.6% (95% CI, 34.2%-59.4%; $P = .15$ and $I^2 = 26.2$), and the pooled rate of adverse events was also high at 19.9% (95% CI, 7.4%-43.4%; $P = .05$ and $I^2 = 49.7$). Therefore, the potential harms from screening must be carefully considered when enrolling individuals into a screening program.

On the other hand, pancreatic cancer screening was associated with several psychological benefits based on a systematic review of 7 studies.35 Screening participants had low-to-moderate levels of pancreatic cancer-related distress at the start, which improved significantly over time. Lastly, several studies reported screening to be cost-effective in high-risk populations.35-37

Based on our analysis and panel discussions, we concluded that the benefits of screening for pancreatic cancer in those with genetic susceptibility to pancreatic cancer outweigh the potential risks and made a conditional recommendation for screening. The overall quality of evidence was low. Patients should be counseled about the risks and benefits of screening before screening is initiated.

TABLE 1. Summary of recommendations

<table>
<thead>
<tr>
<th>Question</th>
<th>Recommendation and quality of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In individuals at increased risk of pancreatic cancer because of genetic susceptibility, we suggest screening for pancreatic cancer compared with no screening (conditional, low quality)</td>
</tr>
<tr>
<td>2</td>
<td>In individuals at increased risk of pancreatic cancer because of genetic susceptibility, we suggest screening with EUS, EUS alternating with MRI, or MRI based on patient preference and available expertise (conditional, very low quality)</td>
</tr>
<tr>
<td></td>
<td>• EUS may be preferred: as the initial screening test for patients at very high risk for pancreatic cancer like Peutz-Jeghers syndrome and FAMMM; when EUS can be combined with screening upper endoscopy or colonoscopy (eg, Lynch and Peutz-Jeghers syndrome); when there is a contraindication to MRI (eg, claustrophobia, contrast allergy, implanted metal, and renal failure)</td>
</tr>
<tr>
<td></td>
<td>• MRI may be preferred: for patients at increased risk of adverse events from anesthesia or invasive procedures; for patients who place a high value on avoiding invasive testing; when MRI may be combined with other imaging (eg, enterography for Peutz-Jeghers syndrome).</td>
</tr>
<tr>
<td>3a</td>
<td>In individuals with BRCA2 pathogenic variant, we suggest screening for pancreatic cancer compared with no screening (conditional, very low quality)</td>
</tr>
<tr>
<td>3b</td>
<td>In individuals with BRCA1 pathogenic variant, we suggest screening for pancreatic cancer compared with no screening (conditional, very low quality)</td>
</tr>
<tr>
<td>4</td>
<td>In individuals at increased risk of pancreatic cancer because of genetic susceptibility, we suggest that annual screening be performed (conditional, very low quality)</td>
</tr>
<tr>
<td>5</td>
<td>In individuals at increased risk for pancreatic cancer, we suggest the age at which to begin screening should vary by individual genetic condition (conditional, very low quality)</td>
</tr>
<tr>
<td>6</td>
<td>For each of the following conditions, we recommend the following starting ages:</td>
</tr>
<tr>
<td></td>
<td>(a) BRCA2 pathogenic variant: age 50 or 10 years earlier than the youngest relative with pancreatic cancer.</td>
</tr>
<tr>
<td></td>
<td>(b) BRCA1 pathogenic variant: age 50 or 10 years earlier than the youngest relative with pancreatic cancer.</td>
</tr>
<tr>
<td></td>
<td>(c) PALB2 pathogenic variant: age 50 or 10 years earlier than the youngest relative with pancreatic cancer.</td>
</tr>
<tr>
<td></td>
<td>(d) FPC syndrome: age 50 or 10 years earlier than the youngest relative with pancreatic cancer (screening is recommended for all first-degree relatives of affected family members).</td>
</tr>
<tr>
<td></td>
<td>(e) FAMMM syndrome: age 40 or 10 years earlier than the youngest relative with pancreatic cancer.</td>
</tr>
<tr>
<td></td>
<td>(f) Peutz-Jeghers syndrome: age 35 or 10 years earlier than the youngest relative with pancreatic cancer.</td>
</tr>
<tr>
<td></td>
<td>(g) Heterozygotes for ATM pathogenic variant with first- or second-degree relative with pancreatic cancer: age 50 or 10 years earlier than the youngest relative with pancreatic cancer.</td>
</tr>
<tr>
<td></td>
<td>(h) Lynch syndrome with first- or second-degree relative with pancreatic cancer: age 50 or 10 years earlier than the youngest relative with pancreatic cancer.</td>
</tr>
<tr>
<td></td>
<td>(i) Autosomal-dominant hereditary pancreatitis: age 40.</td>
</tr>
</tbody>
</table>

ATM, Ataxia-telangiectasia mutated; EUS, endoscopic ultrasound; FAMMM, familial atypical multiple mole melanoma; FPC, familial pancreatic cancer; MRI, magnetic resonance imaging.
Question 2: Should individuals at increased risk of pancreatic cancer because of genetic susceptibility undergo screening with EUS or MRI?

Recommendation 2. In patients at increased risk of pancreatic cancer because of genetic susceptibility, we suggest screening with EUS, EUS alternating with MRI, or MRI based on patient preference and available expertise (conditional recommendation, very low quality of evidence).

- **EUS:**
 o May be preferred: as the initial screening test; for patients at very high risk for pancreatic cancer like Peutz-Jeghers syndrome and FAMMM; when EUS can be combined with screening upper endoscopy or colonoscopy (eg, Lynch and Peutz-Jeghers syndrome); when there is a contraindication to MRI (eg, claustrophobia, contrast allergy, implanted metal, and renal failure).
 o A linear array echoendoscope may be preferable over a radial echoendoscope.

- **MRI:**
 o May be preferred: for patients at increased risk of adverse events from anesthesia or endoscopic procedures; for patients who place a high value on avoiding invasive testing; when MRI may be combined with other imaging (eg, enterography for Peutz-Jeghers syndrome).
 o A contrast-enhanced exam using intravenous agents is preferred, a minimum of 1.5-T magnet should be applied using phased-array coils, and a 3-T magnet may have an additional advantage in detection of small pancreatic lesions because of superior soft tissue resolution.

Summary of evidence. We conducted a meta-analysis based on the systematic review performed for Question 1. Of the 25 included studies, 6 studies (n = 338) used only EUS, 5 studies (n = 455) used only MRI, and 14 studies (n = 2460) used a combination of EUS and MRI. Outcomes of interest for this question were yield of screening for high-risk lesions, high-risk resectable lesions, and harms from screening EUS and MRI. The pooled cumulative yield of screening for high-risk lesions did not differ between EUS and MRI (4.0% [95% CI, 1.7%-9.1%], P = .18, I² = 34.4 for EUS; 2.4% [95% CI, 1.0%-5.4%], P = .21, I² = 31.0 for MRI; and 3.1% [95% CI, 2.1%-4.6%], P = .022, I² = 48.4 for a combination of EUS and MRI). The pooled yield of screening for high-risk resectable lesions also did not differ among the 2 modalities (3.9% [95% CI, 1.7%-8.5%], P = .18, I² = 34.4 for EUS; 1.8% [95% CI, 0.8%-4.0%], P = .38, I² = 5.4 for MRI; and 1.7% [95% CI, 1.0%-3.0%], P = .006, I² = 55.9 for a combination of EUS and MRI). Although there was a trend toward EUS demonstrating a higher diagnostic yield when compared with MRI, this did not reach statistical significance. There may be 2 possible explanations for this trend. First, referral bias may be present because patients at higher risk for pancreatic cancer may be more likely to undergo EUS. Second, EUS may be more sensitive than MRI at detecting small solid pancreatic lesions as demonstrated in 2 studies where almost all solid pancreatic cancers were only found by EUS.38,59

Six studies (n = 350) reporting on adverse outcomes from screening EUS or MRI found none.20,36,40-43 We rated down the evidence for imprecision. Thus, the overall quality of evidence was very low.

When EUS is performed for screening, a linear-array echoendoscope may be preferable because a randomized controlled study showed that it detected more pancreas lesions than a radial echoendoscope (82% vs 67%, P < .001).44 The choice of echoendoscope should also take into consideration the endoscopist’s training and experience. When MRI is performed for screening, we suggest the study should be performed with and without intravenous contrast, using at minimum a 1.5-T magnet.45,46 A 3-T magnet may provide additional advantage in detection of small pancreatic lesions because of superior soft tissue resolution.47

Question 3a: Should individuals with BRCA2 pathogenic variant undergo screening for pancreatic cancer?

Recommendation 3a. In individuals with BRCA2 pathogenic variant, we suggest screening for pancreatic cancer compared with no screening (conditional recommendation, very low quality of evidence).

Summary of evidence. For this question, we conducted a systematic review and meta-analysis, with the help of an independent, expert biostatistician and cancer epidemiologist (T.R.R.). We aimed to determine the risk of pancreatic cancer in individuals with BRCA1/2 pathogenic variants. A lifetime risk of pancreatic cancer >5% or a relative risk >5 has been proposed as the threshold to identify individuals who are high risk for pancreatic cancer48 and was adopted as a threshold for our panel.

Our search resulted in 11 studies (n = 62,269). We assessed the risk of pancreatic cancer in these patients using 2 methods: relative risk (RR) and standardized incidence rate (SIR). The RR of pancreatic cancer in BRCA2 was reported in 5 studies, and the pooled estimate of RR for pancreatic cancer was 5.1 (95% CI, 3.9-6.3; P = .41, I² = .0). Using this estimate, we computed the absolute lifetime risk of pancreatic cancer to age 80 to be 5.2%.49-53 Three studies reported on SIR for pancreatic cancer in BRCA2, with a pooled estimate of SIR for pancreatic cancer of 7.2 (95% CI, 1.5-13.0; P = .001, I² = 85.0). Using this
estimate, we computed the cumulative lifetime risk of pancreatic cancer to age 80 to be 7.4%.34-36

There was no significant difference between men and women for the risk of pancreatic cancer. Furthermore, reporting on family history of pancreatic cancer in BRCA2 was limited.

We did not find any studies that reported on all-cause or pancreatic cancer–related mortality in screen-detected pancreatic cancer in BRCA2. We estimated the yield of screening for high-risk lesions in BRCA1/2 using a meta-analysis on pancreatic cancer screening studies (see Questions 1 and 2). Of the 25 studies, 8 (n = 375 patients) reported on BRCA1/2. The yield of screening was not reported separately for BRCA1 and BRCA2. The pooled yield of screening for these individuals was 8.6% (95% CI, 4.5%-16.0%; \(P = .21, I^2 = 27.4 \)). No information on harms of screening specific to BRCA1/2 was available. We rated down the evidence for imprecision. Thus, the overall quality of evidence was very low. In balancing the desirable and undesirable effects of screening and considering all possible outcomes, the panel made a conditional recommendation for pancreatic cancer screening in patients with BRCA2 pathogenic variant.

Question 3b: Should individuals with a BRCA1 pathogenic variant undergo screening for pancreatic cancer?

Recommendation 3b. In individuals with BRCA1 pathogenic variant, we suggest screening for pancreatic cancer compared with no screening (conditional recommendation, very low quality of evidence).

Summary of evidence. We used the aforementioned systematic review for this question. We did not find any studies that reported on all-cause or pancreatic cancer–related mortality in screen-detected pancreatic cancer in BRCA1. The RR of pancreatic cancer in BRCA1 was reported in 4 studies, and the pooled estimate of RR for pancreatic cancer was 1.9 (95% CI, 1.0-2.8; \(P = .28, I^2 = 21.0 \)). When this estimate was used, the cumulative lifetime risk of pancreatic cancer to age 80 was 3.5%.51-53,57 Three studies reported on the SIR of pancreatic cancer in BRCA1, and the pooled estimate of SIR for pancreatic cancer was 3.7 (95% CI, 2.5-4.8; \(P = .45, I^2 = .0 \)).34-36 Using this estimate, we computed the cumulative lifetime risk of pancreatic cancer to age 80 to be 3.8%. We rated down the evidence for imprecision. Thus, the overall quality of evidence was very low. As with BRCA2, there was no significant difference between men and women for the risk of pancreatic cancer, and there was limited reporting on family history of pancreatic cancer.

As noted, the magnitude of association between pancreatic cancer and BRCA1 was lower when compared with BRCA2 and did not appear to cross our threshold of 5% lifetime risk. Several potential explanations for this effect were considered by the panel in depth:

- Fewer individuals with BRCA1 pathogenic variants were included in studies, and very few BRCA1-related pancreatic cancers were noted in these studies. Therefore, this low rate maybe because of selection bias and not a true biologic effect.
- Before 2012, the association between pancreatic cancer and BRCA1 was largely ignored, thus further limiting long-term data on the subject.
- Based on our meta-analysis, we can place high confidence in our finding that carriers of BRCA1/2 were at increased risk of pancreatic cancer. However, there is less confidence in the precision regarding the magnitude of risk. Therefore, even though the SIR was 3.7%, the true risk could be higher if more patients were included.
- The CI was up to 4.8%, which overlapped with the CI for BRCA2 estimates. Therefore, separating the recommendations for BRCA1 and BRCA2 would not be supported by the current evidence.
- There are no differences in response to chemotherapy between BRCA1- and BRCA2-related pancreatic cancers.

After considering these factors, the panel made a conditional recommendation for screening in BRCA1, despite the lifetime risk of pancreatic cancer not reaching the 5% threshold. Given the potentially lower rate of pancreatic cancer in this patient population, clinicians should initiate screening with caution. Patients should be made aware of the risk of developing pancreatic cancer and the potential harms from screening. Screening may not be warranted in patients who place a high value on avoiding harms from medical interventions.

BRCA1/2 germline pathogenic variants affect up to 7% of all patients diagnosed with pancreatic cancer.38 Our analysis did not reveal any subgroups of the BRCA1/2 population who were at increased risk for pancreatic cancer. We did not find any large studies that included data on family history of pancreatic cancer, and therefore the influence of this variable on pancreatic cancer risk could not be determined. Additionally, risk estimates for pancreatic cancer reported above were based on populations that included those with and without a family history of pancreatic cancer, and most patients with BRCA1/2-related pancreatic cancer did not have a family history of pancreatic cancer. Several studies found no association between family history of cancer and increased risk of pancreatic cancer in BRCA1/2.39,60 In a study of 71 patients with pancreatic cancer and BRCA1 (n = 21), BRCA2 (n = 49), or both (n = 1), a family history of pancreatic cancer (first- or second-degree relative) was noted in only 33% of pancreatic cancer patients, suggesting that almost 2 in 3 pancreatic cancers would have been missed had screening been
limited to only those with a family history of pancreatic cancer.61 We also acknowledged other limitations of relying on family history including incompleteness and inaccuracies of family history records, small families, and situations in which many family members died prematurely in wars or natural disasters.62-64 Therefore, the panel did not recommend that individuals with BRCA1/2 pathogenic variants be required to have a family history of pancreatic cancer to be considered for pancreatic cancer screening.

Of note, tumors with deficient homologous recombinaton because of abnormalities such as BRCA1/2 are responsive to both platinum-based chemotherapeutic regimens and poly (ADP-ribose) polymerase inhibitors.17,65-67 With these regimens, increased rates of pathologic response in patients with borderline-resectable pancreatic cancers and prolonged survival in those with advanced disease have been reported,16,17,67 which further supports our conditional recommendation for screening in this patient population.

TIMING AND FREQUENCY OF SCREENING

Question 4: How often should screening for pancreatic cancer be performed in individuals who are at increased risk of pancreatic cancer because of genetic susceptibility?

Recommendation 4. In individuals at increased risk of pancreatic cancer because of genetic susceptibility, we suggest that annual screening be performed (conditional recommendation, very low quality of evidence).

Summary of evidence. Based on our systematic review of the literature, we found no studies that assessed patient outcomes based on screening frequency. To determine the frequency of screening, we relied on existing practices on screening frequency and models of pancreatic cancer progression times. We reviewed screening intervals in studies included in our meta-analysis (Question 1). Of the 25 included studies, 9 reported screening intervals, of which 8 performed screening annually or sooner.32,36,41,68-73 We therefore concluded that most centers perform annual screening. We then reviewed models of pancreatic cancer progression times. We found 1 tumor growth model based on mean differences in age between patients with early and advanced tumors and a second model based on analysis of imaging studies done before the diagnosis of pancreatic cancer.74,75 Both models predicted that the progression from localized to advanced stage could occur within 1 year.74,75 Based on the above evidence, we recommend annual screening for pancreatic cancer.

Question 5: At what age should screening for pancreatic cancer start in individuals who are at increased risk of pancreatic cancer because of genetic susceptibility?

Recommendation 5. In individuals at increased risk for pancreatic cancer because of genetic susceptibility, we suggest that the starting age for screening should vary based on the underlying genetic condition (conditional recommendation, very low quality of evidence).

Summary of evidence. For this question, we again used the RR > 5 or lifetime risk of pancreatic cancer > 5% threshold, which has been adopted by other guidelines10-13 and found to be cost-effective.35 to define populations at increased risk of pancreatic cancer.82 We reviewed the literature, and based on genetic susceptibility to pancreatic cancer, we identified all patient groups who met this threshold. We also reviewed the patient populations enrolled in the 25 studies that were included in our meta-analysis (Question 1) to identify high-risk conditions. We did not find any studies that reported on mortality or yield of screening based on age of screened participants. Based on best available evidence, we determined that screening should start at an age of 1 standard deviation below the reported mean age of cancer diagnosis for that population. For genetic susceptibility conditions like Peutz-Jeghers syndrome and FAMMM that conferred a ≥10 RR of pancreatic cancer, we determined that screening should start at age 2 standard deviation below the reported mean age of pancreatic cancer diagnosis for that population. Our recommendations on age to begin screening are summarized in Table 1.

Diabetes, older age, cigarette smoking, obesity, or a history of chronic pancreatitis increase the risk of developing pancreatic cancer but to a lesser degree than genetic susceptibility conditions mentioned above.76-80 These conditions were outside the purview of this guideline but were addressed by the 2019 U.S. Preventive Services Task Force guidelines.9 The U.S. Preventive Services Task Force did not recommend pancreatic cancer screening for asymptomatic persons who have these risk factors. Patients with a family history of pancreatic cancer who do not meet criteria for FPC are at an approximately 2-fold increased risk of developing pancreatic cancer.81,82 The degree of relatedness and age at onset of pancreatic cancer in the index patient does not appear to affect pancreatic cancer risk. Pancreatic cancer screening for these patients is also generally not recommended.

FUTURE DIRECTIONS

Our systematic literature review highlighted several areas in need of more data to inform pancreatic cancer
screening in high-risk populations. Future studies should address the following:

1. Role of other risk factors. Age, male gender, obesity, smoking, and alcohol are known risk factors for pancreatic cancer. The interaction between these risk factors in individuals with genetic susceptibility to pancreatic cancer are unknown. Cancer models that take these and other risk factors into account are needed to identify those who are most likely to benefit from screening.

2. Biomarkers. Although EUS and MRI are effective tools to diagnose early-stage pancreatic cancer, neither modality can reliably diagnose pancreatic cancer precursors like high-grade pancreatic intraepithelial neoplasia. Furthermore, these tests are expensive, require significant equipment and expertise, and are not widely available. For population-level screening to be possible, noninvasive biomarkers that can accurately identify precursor lesions and early-stage pancreatic cancer will be essential.

3. Circulating tumor cells. Circulating tumor cells and DNA may allow for diagnosis of early-stage pancreatic cancer; however, these techniques need to be validated in large studies on diverse patient populations.

4. Management after normal screening examination. More outcomes data are needed to determine whether those with a normal baseline screening examination or multiple normal screening examinations can safely prolong the screening interval.

What Is New

These guidelines suggest that all patients with *BRCA1/2* pathogenic variant, regardless of family history of pancreatic cancer, should undergo screening for pancreatic cancer. Previous guidelines limited screening to those with a family history of pancreatic cancer.

SUMMARY

These ASGE guidelines use the best available evidence to make recommendations for pancreatic cancer screening for individuals at increased risk of pancreatic cancer because of genetic susceptibility. When compared with symptom-detected pancreatic cancers, screen-detected pancreatic cancers are more likely to be diagnosed at an earlier stage and may have superior outcomes. Our guidelines suggest annual screening with EUS, MRI, or a combination of these modalities. The age to start screening should depend on the genetic condition. These guidelines focus on *BRCA1/2*, acknowledging the recent development of effective chemotherapy regimens for *BRCA1/2*-related cancer. Low-yield pancreatic surgery and adverse events from pancreatic surgery that is performed based on results of screening tests constitute the harms of pancreatic cancer screening and should be taken into account before initiating a screening program. Patients should be carefully counseled regarding the benefits and harms of screening in the context of their values and preferences before they are enrolled in a screening program.

GUIDELINE UPDATE

ASGE guidelines are reviewed for updates approximately every 5 years, or in the event that new data may influence a recommendation. Updates follow the same ASGE guideline development process.

DISCLOSURE

The following authors disclosed financial relationships: M. Saubney: Stockholder with Allurion Technology, Inc; research support and food and beverage from Olympus Corporation of the Americas and Boston Scientific Corporation. N. Thosani: Consultant for and has received travel compensation and food and beverage from Boston Scientific Corporation; consultant for Tae-Woong Medical; consultant for and has received research support and food and beverage from Pentax of America, Inc; receives royalties from UpToDate; has received research support and food and beverage from Endogastric Solutions; speaker for and has received food and beverage from AbbVie, Inc; advisory board for ColonirisMX, Inc. S. Wani: Consultant for and has received food and beverage from Boston Scientific Corporation; consultant for Medtronic, Exact Sciences, and Interpace; advisory board for Cernostics. M. Canto: Consultant for Exact Sciences; has received research support and food and beverage from Endogastric Solutions and Pentax of America, Inc; has received food and beverage from Pentax of America, Inc, Boston Scientific Corporation, and AbbVie, Inc; receives royalties from UpToDate. D. Fishman: Food and beverage compensation from AbbVie, Inc, and Boston Scientific Corporation. T. Golan: Consultant/advisor for AbbVie, Inc, Teva Pharmaceutical Industries Ltd, and Bayer AG; speaker for AbbVie, Inc, Bioline, and Roche; consultant for and research support from Astrazeneca and Merck Sharp & Dohme Corp. M. Hidalgo: Stock and other ownership interests in Nelum Corp and Champions Oncology; stock and honoraria from Agensia and InxMed; research support from BiolineRx, Erytech Pharma, BioExcell, and TOP Alliance Biosciences; travel compensation from Bayer HealthCare Pharmaceuticals, Inc; food and beverage compensation from Boehringer Ingelheim Pharmaceuticals, Inc, Pfizer, Inc, and Sunovion Pharmaceuticals, Inc. D. Sabani: Travel compensation and food and beverage from GE Healthcare; food and beverage compensation from Abbott Laboratories. All other authors disclosed no financial relationships.
ACKNOWLEDGMENTS

We thank Emily Groesbeck and Wenora Johnson, 2 patient representatives from the Facing Hereditary Cancer Empowered (FORCE), an advocacy organization for families facing hereditary cancers, for participating in our panel as well as Dr Anne Marie Lennon, Dr Eman Qayed, Dr Ajay Pal Singh, and Dr Jenifer Lightdale for their review of this document.

This guideline was funded exclusively by the American Society for Gastrointestinal Endoscopy; no outside funding was received to support the development of this guideline.

REFERENCES

Abbreviations: ASGE, American Society for Gastrointestinal Endoscopy; ATM, ataxia-telangiectasia mutated; CI, confidence interval; EUS, endoscopic ultrasound; FAMMM, familial atypical multiple mole melanoma; FPC, familial pancreatic cancer; GRADE, Grading of Recommendations Assessment, Development and Evaluation; MRI, magnetic resonance imaging; RR, relative risk; SIR, standardized incidence rate.

*Drs Sawhney and Calderwood contributed equally to this article.

Copyright © 2022 by the American Society for Gastrointestinal Endoscopy
0016-5107/$36.00
https://doi.org/10.1016/j.gie.2021.12.001
Received November 24, 2021. Accepted December 2, 2021.

Current affiliations: Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA (1), Section of Gastroenterology and Hepatology, Dartmouth-Hitchcock Medical Center, Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA (2), Center for Interventional Gastroenterology at UT Health, McGovern Medical School, Houston, Texas, USA (3), Harvard TH Chan School of Public Health and Dana-Farber Cancer Institute, Boston, Massachusetts, USA (4), Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA (5), Division of Gastroenterology and Hepatology, Johns Hopkins Medicine, Baltimore, Maryland, USA (6), Section of Pediatric Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA (7), Oncology Institute, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (8), Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York, USA (9), Division of Gastroenterology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA (10), Department of Clinical Genomics and Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA (11), Department of Radiology, University of Washington, Seattle, Washington, USA (12), Department of Surgery, Penn Medicine, Philadelphia, Pennsylvania, USA (13), Department of Gastroenterology, Hepatology and Nutrition, University of Florida, Gainesville, Florida, USA (14).

Reprint requests: Bashar J. Qumseya, MD, MPH, FASGE, Department of Gastroenterology, Hepatology and Nutrition, University of Florida, PO Box 100214, 1329 SW 16th St, Ste 5251, Gainesville, FL 32610-0214.