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Background and Aims: Artificial intelligence (AI)-based applications have transformed several industries and
are widely used in various consumer products and services. In medicine, AI is primarily being used for image clas-
sification and natural language processing and has great potential to affect image-based specialties such as radi-
ology, pathology, and gastroenterology (GE). This document reviews the reported applications of AI in GE,
focusing on endoscopic image analysis.

Methods: The MEDLINE database was searched through May 2020 for relevant articles by using key words such
as machine learning, deep learning, artificial intelligence, computer-aided diagnosis, convolutional neural net-
works, GI endoscopy, and endoscopic image analysis. References and citations of the retrieved articles were
also evaluated to identify pertinent studies. The manuscript was drafted by 2 authors and reviewed in person
by members of the American Society for Gastrointestinal Endoscopy Technology Committee and subsequently
by the American Society for Gastrointestinal Endoscopy Governing Board.

Results: Deep learning techniques such as convolutional neural networks have been used in several areas of GI
endoscopy, including colorectal polyp detection and classification, analysis of endoscopic images for diagnosis of
Helicobacter pylori infection, detection and depth assessment of early gastric cancer, dysplasia in Barrett’s esoph-
agus, and detection of various abnormalities in wireless capsule endoscopy images.

Conclusions: The implementation of AI technologies across multiple GI endoscopic applications has the poten-
tial to transform clinical practice favorably and improve the efficiency and accuracy of current diagnostic methods.
(VideoGIE 2020;5:598-613.)
(footnotes appear on last page of article)
The American Society for Gastrointestinal Endoscopy
(ASGE) Technology Committee provides reviews of exist-
ing, new, or emerging endoscopic technologies that
have an impact on the practice of GI endoscopy.
Evidence-based methods are used, with a MEDLINE liter-
ature search to identify pertinent clinical studies on the
topic and a MAUDE (Food and Drug Administration Cen-
ter for Devices and Radiological Health) database search
to identify the reported adverse events of a given technol-
ogy. Both are supplemented by accessing the “related ar-
ticles” feature of PubMed and by scrutinizing pertinent
references cited by the identified studies. Controlled clin-
ical trials are emphasized, but in many cases data
from randomized controlled trials are lacking. In such
cases, large case series, preliminary clinical studies,
and expert opinions are used. Technical data are gath-
ered from traditional and web-based publications, pro-
prietary publications, and informal communications
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with pertinent vendors. Reports on emerging technology
are drafted by 1 or 2 members of the ASGE Technology
Committee, reviewed and edited by the committee as a
whole, and approved by the Governing Board of the
ASGE. When financial guidance is indicated, the most
recent coding data and list prices at the time of publica-
tion are provided. For this review, the MEDLINE database
was searched through May 2020 for relevant articles by
using relevant key words such as “machine learning,”
“deep learning,” “artificial intelligence,” “computer-aided
diagnosis,” “convolutional neural networks,” “gastroin-
testinal endoscopy,” and “endoscopic image analysis,”
among others. Technology reports are scientific reviews
provided solely for educational and informational pur-
poses. Technology reports are not rules and should not
be construed as establishing a legal standard of care or
as encouraging, advocating, requiring, or discouraging
any particular treatment or payment for such treatment.
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INTRODUCTION

In recent years, a proliferation of artificial intelligence
(AI)-based applications has rapidly transformed our work
and home environments and our interactions with devices.
AI is a broad descriptor that refers to the development and
application of computer algorithms that can perform tasks
that usually require human intelligence.1 Machine learning
(ML) refers to AI in which the algorithm, based on the
input raw data, analyzes features in a separate dataset
without specifically being programmed and delivers a
specified classification output (Figs. 1-3).2,3 Examples of
prevalent ML-based applications and devices include digital
personal assistants on smartphones and speakers; predic-
tive analytics that provide shopping or movie recommen-
dations based on previous purchases or downloads or
that show user-specific content on social networks; auto-
mated reading and analysis of postal addresses; automated
investing based on analysis of large amounts of financial
data; and autonomous vehicles.

One of the more common tasks to which ML has been
applied is image discrimination and classification, which
has many applications within medicine. In conventional
ML, a training set of images with the desired categories is
used to repeatedly train the system to improve perfor-
mance and reduce errors. After multiple training se-
quences, the system performance is evaluated on an
independent test set of images. Support vector machine
(SVM) algorithms and artificial neural networks (ANN)
are 2 commonly used conventional ML techniques.3-5

The major disadvantage of these conventional, handcrafted
systems is the engineering and effort needed to design
each system for a specific task. Deep learning (DL) is a
transformative ML technique that overcomes many of
these limitations. In contrast to SVM and ANN approaches,
DL uses a back-propagation algorithm consisting of multi-
ple layers, which enables the system itself to change the
parameters in each layer based on the representations in
the previous layers (representation learning) and to pro-
vide the output more efficiently. One of the major advan-
tages of this system is transfer learning, in which a
pretrained model that has learned natural image features
on one task can be applied to a new task, even with a
limited training dataset for the new task.6 This avoids the
need to design a system de novo for each task. For
example, a model that was developed to classify
photographs of animals can subsequently be applied to
the classification of flower types even without a large
training dataset of flower images.

Convolutional neural network (CNN) is the most prom-
inent DL technique currently in use, especially for image
and pattern recognition. Other DL techniques include
recurrent neural networks, which are applied for natural
language processing and understanding and for develop-
ment of predictive models. Several open-source software
platforms that offer pretrained CNNs are available (eg,
www.VideoGIE.org
Convolutional Architecture for Fast Feature Embedding
[Caffe, Berkeley AI Research, University of California, Ber-
keley, Calif, USA]).7 A more detailed description of the
technical aspects of these techniques is beyond the
scope of this document; for additional information, more
comprehensive reviews in this area are available.2,6,8,9 A
glossary of commonly AI-related terms and basic defini-
tions is also included in Table 1.

As with several other areas such as consumer products
and finance, AI is expected to be a disruptive technology
in some medical specialties, particularly those that require
analysis and interpretation of large datasets and images
(eg, radiology, pathology, and dermatology).3,4,10 For
example, AI is being evaluated in radiology to triage
radiographs based on potential pathology to determine
the order of reading by the radiologist and to calculate
tumor volumes on CT scans in patients with
hepatocellular carcinoma.1 A wide range of potential
applications for ML and DL exists in gastroenterology,
especially in the realm of GI endoscopy, which also
involves acquisition and analysis of large datasets of
images.11 Although computer-aided analysis and detection,
which involve the use of algorithms to analyze endoscopic
images and detect or diagnose specific conditions, have
been areas of research for many years, the advent of DL
is likely to be a transformative process in this field. Several
early reports have described the application of DL and
other forms of AI to varied clinical problems within GI
endoscopy.

This document reviews the currently reported applica-
tions of AI in GI endoscopy, including colorectal polyp
detection, classification, and real-time histologic assess-
ment. Furthermore, the document reviews the use of AI
in the analysis of wireless capsule endoscopy (WCE) im-
ages and videos, localization and diagnosis of esophageal
and gastric pathology on EGD, and image analysis of endo-
scopic ultrasound images (Table 2). The document does
not cover the application of AI techniques (eg, natural
language processing) for mining and/or analysis of
endoscopic or medical databases or for using
demographic and clinicopathologic variables to create
predictive models.
APPLICATIONS IN ENDOSCOPY

Colorectal polyps: detection, classification, and
cancer prediction

AI has been primarily evaluated in 3 clinical scenarios for
neoplastic disorders of the colon: polyp detection, polyp
characterization (adenomatous vs nonadenomatous), and
prediction of invasive cancer within a polypoid lesion. Pub-
lished computer-aided diagnosis (CAD) studies for colon
polyp detection (CADe) and classification (CADx) are sub-
ject to a number of limitations. Higher-quality images may
be chosen for CAD, leading to selection bias. Some
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Figure 1. Diagram representation of hierarchy of artificial intelligence domains (adapted from Goodfellow et al8 with permission). Abbreviations: AI,
artificial intelligence; ML, machine learning; RL, representation learning; DL, deep learning.

Figure 2. Flowchart and descriptions of various types of learning and differentiation between conventional machine learning and deep learning (adapted
from Chartrand et al6 with permission).
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advanced imaging technologies used in the literature are
not widely available for clinical use. One study to date
has included sessile serrated lesions in a CADe model
but not in CADx, a limitation because these polyps are
important precursors in up to 30% of colon cancers.12

CAD has been evaluated in most studies by using
archived still images or video segments of real
procedures. Although multiple systems have the
processing speed to be considered “real-time capable,” to
date only 2 studies have been performed during real-
time colonoscopy.12,13 To be clinically useful, AI
platforms in colonoscopy will need rapid image analysis
with real-time information that assists the endoscopist in
accurately determining the presence and/or type of polyp
present.

Polyp detection. The rate of missed polyps during co-
lonoscopy is as high as 25%.14 The subtle appearance of
some polyps, quality of the bowel preparation and
600 VIDEOGIE Volume 5, No. 12 : 2020
colonoscopist mucosal inspection technique, inherent
ability, and fatigue may all contribute to missing these
polyps.15,16 Improved detection of neoplastic polyps may
result in a greater reduction in interval colon cancers.
The incorporation of AI may reduce polyp miss rates,
particularly among those endoscopists with lower
adenoma detection rates (ADRs). Initial CADe studies
used traditional handcrafted algorithms for image
analysis17,18; however, several recent publications have
reported on the use of DL for polyp detection.12,19-21

A small study assessed a computer-aided polyp detec-
tion model by using 24 archived colonoscopy videos con-
taining 31 polyps.17 Polyp location was marked by an
expert endoscopist and was used as the criterion
standard. The polyp detection sensitivity and specificity
for the CADe system were 70.4% and 72.4%, respectively.
The model performed best for identification of small flat
lesions (Paris 0-II), which may be difficult to detect
www.VideoGIE.org
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TABLE 1. Glossary of common artificial intelligence-related terms and definitions1,2,8,9

Term Definition/Description

Artificial intelligence (AI) Branch of computer science that develops machines to perform tasks that would
usually require human intelligence

Machine learning (ML) Subfield of AI in which algorithms are trained to perform tasks by learning patterns from data rather than
by explicit programming

Representation learning (RL) Subtype of ML in which algorithms learn the best features required to classify data on their own

Deep learning (DL) Type of RL in which algorithms learn a composition of features that reflect a hierarchy of structures
in the data and provide detailed image classification output

Deep reinforcement learning (DRL) Technique combining DL and sequential learning to achieve a specific goal over several steps
in a dynamic environment

Training dataset Dataset used to select the ideal parameters of a model after iterative adjustments

Validation dataset A (usually) distinct dataset used to test and adjust the parameters of a model

Neural networks Model of layers consisting of connected nodes broadly similar to neurons in a biological nervous system

Support vector machine (SVM) Classification technique that enables identification of an optimal separation plane between categories
by receiving data inputs in a testing dataset and providing outputs that can be used in a separate

validation dataset

Recurrent neural networks DL architecture for tasks involving sequential inputs such as speech or language and used for speech
recognition and natural language processing and understanding (eg, predictive text suggestions for

next words in a sequence)

Convolutional neural networks (CNN) DL architecture that adaptively learns hierarchies of features through back-propagation and is used
for detection and recognition tasks in images (eg, face recognition)

Computer-aided detection/diagnosis Use of a computer algorithm to provide detection or a diagnosis of a specified object/region of interest

Transfer learning Ability of a trained CNN model to perform a separate task by using a relatively small dataset
for the new task

Figure 3. An example of convolutional neural network for colorectal polyps (adapted from Byrne et al33 with permission).
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endoscopically. A similar study used a different CADe
model to evaluate video and still images of 25 unique
polyps; the model demonstrated a sensitivity of 88% for
polyp detection. Although the study used archived images,
this algorithm was capable of providing real-time (0.3 sec-
ond latency) analysis and reporting.18

Significant improvements have been realized in
computer-aided polyp detection with the incorporation
of DL technologies (Video 1, available online at www.
VideoGIE.org). A single-center study designed and trained
a CNN using 8641 labeled images containing 4088 unique
polyps from screening colonoscopies of more than 2000
patients.19 On an independent validation set of 1330
images, the CNN system detected polyps with an
www.VideoGIE.org
accuracy of 96.4% and a false-positive rate of 7%. The inves-
tigators also tested the model on 9 colonoscopy videos in
which a total of 28 polyps were detected and removed and
then compared the computer-assisted image analysis with
the analysis of 3 expert colonoscopists (ADRs �50%). The
3 experts identified 36 polyps while reviewing unaltered
videos and 45 polyps while reviewing CNN-overlaid videos.
When expert review with CNN overlay was used as the cri-
terion standard, the sensitivity and specificity of the CNN
alone for polyp detection in these videos were 93% and
93%, respectively (P < .00001). False positives generated
by the CNN tended to occur in the settings of near-field
collapsed mucosa, debris, suction marks, narrow-band im-
aging (NBI), and polypectomy sites. The fast processing
Volume 5, No. 12 : 2020 VIDEOGIE 601
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TABLE 2. Reported applications of computer-aided diagnosis and artificial intelligence in various endoscopic procedures

Procedure Application

Colonoscopy Detection of polyps (real time and on still images and video)*

Classification of polyps (neoplastic vs hyperplastic)*

Detection of malignancy within polyps (depth of invasion on endocytoscopic images)*

Presence of inflammation on endocytoscopic images*

Wireless capsule endoscopy (WCE) Lesion detection and classification (bleeding, ulcers, polyps)*

Assessment of intestinal motility

Celiac disease (assessment of villous atrophy, intestinal motility)

Improve efficiency of image review

Deletion of duplicate images and uninformative image frames (eg, images with debris)*

Upper endoscopy Identify anatomical location*

Diagnosis of Helicobacter pylori infection status*

Gastric cancer detection and assessing depth of invasion*

Esophageal squamous dysplasia

Detection and delineation of early dysplasia in Barrett’s esophagus*

Real-time image segmentation in volumetric laser endomicroscopy (VLE) in Barrett’s esophagus*

Endoscopic ultrasound (EUS) Differentiation of pancreatic cancer from chronic pancreatitis and normal pancreas

Differentiation of autoimmune pancreatitis from chronic pancreatitis

EUS elastography

*Applications in which use of deep learning has been reported.
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speed (10 milliseconds per frame), the ability to identify
polyps during examination with standard high-definition
white light endoscopy (HD-WLE), and the ability to run
the software on standard consumer-quality desktop com-
puters suggest that the technology could be practical in a
“real world” endoscopy environment.

Wang et al12 reported the first prospective randomized
controlled trial demonstrating an improvement in ADR
using CADe technology. Patients were randomized in a
nonblinded fashion to undergo routine diagnostic
colonoscopy (n Z 536) or colonoscopy with the
assistance of real-time computer-aided polyp detection
(n Z 522). The DL-based CNN system provided simulta-
neous visual and audio notification of polyp detection.
The AI system significantly increased ADR (29.1% vs
20.3%; P < .001), mean number of adenomas per patient
(0.53 vs 0.31; P < .001), and overall polyp detection rate
(45% vs 29%, P < .001). The improved ADR was ascribed
to a higher number of diminutive adenomas identified
(185 vs 102; P < .001) because there was no statistically sig-
nificant difference in detection of larger adenomas (77 vs
58; P Z .075). This study supports the use of CADe as
an aid to endoscopists with low ADR (20% baseline); how-
ever, the benefit of an automated polyp detection system
must be validated for endoscopists with greater expertise.
A small number of false positive cases were reported in the
CADe group (n Z 39), equivalent to 0.075 per colonos-
copy. The false positives were ascribed to intraluminal bub-
bles, retained fecal material, wrinkled mucosa, and local
inflammation. Withdrawal time was slightly increased while
602 VIDEOGIE Volume 5, No. 12 : 2020
using the CADe system (6.9 minutes vs 6.3 minutes)
because of the additional time for biopsy sampling of addi-
tional polyps detected. In addition, the CADe system
increased detection of diminutive hyperplastic polyps
almost 2-fold (114 vs 52; P < .001). It is likely that endo-
scopists, with the help of a virtual chromoendoscopy or
a CADx system, could render a high-confidence optical
diagnosis of diminutive hyperplastic rectosigmoid polyps
supporting a detect, diagnose, and leave in situ strategy,
which would result in workload and cost reductions.22

Wang et al21 performed another CADe study that aimed
to assess the ability of AI to improve colon polyp detection,
measured as a reduction in the adenoma miss rate (AMR).
This was a single-center, open-label, prospective, tandem
colonoscopy study of patients randomly assigned to un-
dergo CADe colonoscopy (n Z 184) or routine colonos-
copy (n Z 185), followed immediately by the
endoscopist performing the other procedure. Overall,
AMR was significantly lower in the CADe colonoscopy
arm (13.89% vs 40.00%; P < .0001). AMR was found to
be significantly lower for both diminutive (<5 mm) and
small adenomas (5-9 mm) in the CADe colonoscopy group.
Moreover, a post hoc video analysis attempted to measure
the AMR for only “visible” polyps because this represents
the maximal possibility that CADe could help to decrease
the miss rate. When comparing CADe to standard high-
definition white light endoscopy (HDWL) colonoscopy,
only 1.59% of visible adenomas were missed by CADe co-
lonoscopy, whereas 24.21% of visible polyps were missed
in the routine colonoscopy group (P < .001).
www.VideoGIE.org
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Repici et al20 performed the third multicenter,
randomized trial of AI for polyp detection in real-time co-
lonoscopy for indications of screening, surveillance, or
fecal immunochemical test positivity. Participants (n Z
685) were randomized in a 1:1 ratio to CADe (GI-Genius,
Medtronic, Dublin, Ireland) with HDWL colonoscopy or
HDWL colonoscopy alone. The CADe system improved
ADR to 54.8% (187 of 341) from 40.4% (139 of 344) in
the control group (relative risk, 1.30; 95% confidence inter-
val [CI], 1.14-1.45). Adenomas detected per colonoscopy
were also higher in the CADe group (mean 1.07 � 1.54)
than in the control group (mean 0.71 � 1.20) (incidence
rate ratio 1.46; 95% CI, 1.15-1.86). The improved ADR
was seen in polyps <5 mm size and those 5 to 9 mm diam-
eter without increasing withdrawal time.

Polyp classification. Alternative strategies for manag-
ing diminutive colon polyps have been proposed, including
“resect and discard” or “leave in situ” paradigms.23-25 These
strategies involve interrogation of the polyp using an
enhanced imaging technique; the polyp is then resected
and discarded if it appears adenomatous, or left in situ if
it appears hyperplastic and is located in the rectosigmoid co-
lon. However, attaining the necessary accuracy thresholds to
implement these approaches has been challenging outside
of expert centers.24,26 CADx may provide a support tool
for endoscopists that allows more widespread attainment
of the recommended accuracy thresholds.27 Potential
benefits include improved cost effectiveness, shorter
procedure time, and fewer adverse events resulting from
unnecessary polypectomies.

A summary of published reports on AI for polyp classifi-
cation is presented in Table 3. Early studies on polyp
classification published in 2010 and 2011 evaluated the
ability of CADx to discriminate adenomatous from
hyperplastic polyps when using magnification
chromoendoscopy28 or magnification NBI.29-31 These
studies used traditional (non-DL) AI techniques and
achieved accuracy rates for polyp classification of 85% to
98.5%. However, these studies were limited in that the im-
age analysis software lacked real-time polyp characteriza-
tion capability, required manual segmentation of the
polyp margins, and analyzed images that were captured us-
ing magnification technologies that are both operator
dependent and not routinely available in clinical practice.

More recent studies have used AI technology with im-
mediate polyp classification capability,13,30,32-41 although
only one of the studies has been evaluated in real time dur-
ing an in vivo rather than recorded colonoscopy.13 These
AI polyp classification studies used enhanced imaging
technologies beyond HD-WLE, such as NBI, magnification
NBI, endocytoscopy, confocal endomicroscopy, or laser-
induced autofluorescence. In a prospective single-
operator trial of 41 patients, 118 colorectal lesions were
evaluated with magnifying NBI and real-time CADx using
an SVM-based technique before resection.30 The
diagnostic accuracy of CADx for diminutive polyp
www.VideoGIE.org
classification was 93.2%, with the pathologic diagnosis of
the resected polyp serving as the criterion standard.
Notably, the recommended surveillance colonoscopy
interval based on real-time CAD histology prediction was
concordant with pathology in 92.7% of the subset of dimin-
utive polyps (n Z 88), exceeding the Preservation and
Incorporation of Valuable Endoscopic Innovations (PIVI)
initiative threshold of �90% for the “resect and discard”
strategy.23

Applying DL technology to image recognition of polyps
has led to higher accuracy and faster image processing
times (Video 2, available online at www.giejournal.org).33

Four studies have used CNNs to classify diminutive colon
polyps as adenomatous or hyperplastic after inspection
with conventional NBI,29,42 magnifying NBI,30 or near-
focus NBI,32 using histology as the criterion standard.
These studies trained the CNN using still images30,42 or
video.29,32 On validation sets of 106 to 300 polyps, these
CNNs identified adenomatous polyps in near real time
(50 millisecond delay in one study) with a diagnostic
accuracy of 88.5% to 94% and a negative predictive value
(NPV) of 91.5% to 97%. The level of performance of the
CNN in these studies met the “leave in situ” minimum
threshold of a 90% NPV proposed by the American
Society for Gastrointestinal Endoscopy PIVI initiative.23

Jin et al42 demonstrated that the use of CADx improved
the overall accuracy of optical polyp diagnosis from
82.5% to 88.5% (P < .05). AI assistance was most
beneficial for novices with limited training in using
enhanced imaging techniques for polyp characterization.
For the novice group of endoscopists (n Z 7), the
ability to correctly differentiate adenomatous from
hyperplastic diminutive polyps improved with CADx
from 73.8% accuracy to levels comparable to experts at
85.6% (P < .05). In contrast, colonoscopy experts (n Z
4) with variable experience with NBI and formally trained
experts in NBI (n Z 11) demonstrated a smaller
improvement with the addition of CADx, from 83.8% to
89.0% and 87.6% to 90.0%, respectively. Limitations of
the study included the selection of only high-quality im-
ages for study inclusion and exclusion of sessile serrated
polyps and lymphoid aggregates from the polyp
population.

In a prospective study of 791 consecutive patients who
underwent colonoscopy with endocytoscopes using NBI or
methylene blue staining, CADx was able to characterize
diminutive rectosigmoid polyps in real time with perfor-
mance levels necessary to follow the “diagnose and leave
in situ strategy” for nonneoplastic polyps.13 A total of 466
diminutive (including 250 rectosigmoid) polyps from 325
patients were identified. The DL system distinguished
rectosigmoid adenomas from hyperplastic polyps in real
time with an accuracy of 94% and an NPV of 96%.
However, CAD was not useful in distinguishing
neoplastic from nonneoplastic polyps proximal to the
sigmoid colon (NPV 60.0%).
Volume 5, No. 12 : 2020 VIDEOGIE 603
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TABLE 3. Summary of reported studies on computer-aided diagnosis or detection of colorectal polyps

Study Design Real time or delayed?
Lesion number

(learning/validation)
Type of computer

aided design

Takemura 201028 Retrospective Image analysis ex vivo.
Not real time capable.

72 polyps/134 polyps Automated classification

Tischendorf 201029 Post hoc analysis of
prospective data

Image analysis ex vivo.
Not real time capable.

209 polyps/NS Automated classification with SVM

Gross 201131 Post hoc analysis of
prospective data

Image analysis ex vivo.
Not real time capable.

434 polyps/NS Automated classification with SVM

Takemura 201232 Retrospective Image analysis ex vivo NR/371 polyps Automated classification with SVM

Kominami 201630 Prospective Real time analysis of
ex vivo images

NR/118 polyps Automated classification with SVM

Chen 201834 Prospective validation Image analysis ex vivo. 2157/284 polyps Automated classification with CNN

Real time capability.

Byrne 201933 Prospective validation Ex vivo video images.
Real time capability (50 ms delay)

Test set: 125 videos Automated classification with CNN

Jin 202042 Prospective validation Image analysis ex vivo 2150/300 Automated classification with CNN

Mori 201537 Retrospective Ex vivo of still images NR/176 polyps Automated classification (type NS)

Mori 201635 Retrospective Ex vivo of still images.
Real time capability.

6051/205 polyps Automated classification with SVM

Misawa 201636 Prospective Ex vivo of still images 979/100 Automated classification with SVM

Mori 201813 Prospective Real time colonoscopy NS/475 polyps Automated classification with SVM

Abbreviations: CNN, convolutional neural network; MB, methylene blue; NBI, narrow-band imaging (Olympus Corporation, Center Valley, Penn, USA); NR, not reported; NS, not
specified or studied; SA, serrated adenoma (includes SSA and traditional SA); SVM, support vector machine.
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Adoption of AI systems in the form of a clinical decision
support device could lead to more widespread use of the
“leave in situ” and “resect and discard” strategies for man-
agement of diminutive colorectal polyps. Mori et al43

recently reported the first AI system that enables polyp
detection followed by immediate polyp characterization
in a real-time fashion by use of an endocytoscope
(CF-H290ECI; Olympus Corp, Tokyo, Japan). The same
group quantified the cost reduction from using an AI sys-
tem to aid in the optical diagnosis of colorectal polyps.44

A diagnose and leave in situ strategy for diminutive
rectosigmoid polyps supported by the AI prediction (not
removed when predicted to be nonneoplastic) compared
with a strategy of resecting all polyps yielded an average
colonoscopy cost savings of 10.9% and gross annual
604 VIDEOGIE Volume 5, No. 12 : 2020
reduction in reimbursement of $85.2 million in the
United States.

AI may serve as the arbitrator between the endoscopist
and pathologist when there exists discordant histologic
characterization of diminutive colon polyps. In a series of
644 lesions �3 mm with a high-confidence optical diag-
nosis of adenoma, discrepancy between endoscopic and
pathologic diagnoses occurred in 186 (28.9%) lesions.22

This included a pathologic diagnosis of hyperplastic
polyp, sessile serrated polyp, and normal mucosa in 85
(13.2%), 2 (0.3%), and 99 (15.4%), respectively. Among
these discordant results, Shahidi et al22 used a real-time
AI clinical decision support solution, which agreed with
the endoscopic diagnosis in 168 (90.3%) lesions. This
raises the question of the validity of using a pathologic
www.VideoGIE.org
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TABLE 3. Continued

Imaging technology Lesion size and type
Sensitivity/Specificity/Negative

predictive value accuracy for neoplasia
Accuracy for

surveillance interval

Magnifying chromoendoscopy
(Kudo pit pattern)

NR NR/NR/NR/98.5% NS

No SA

Magnifying NBI 8.1 mm avg (2-40 mm) 90%/70%/NR NS

SA excluded 85.3%

Magnifying NBI 2-10 mm (SA; n Z 2) 95%/90.3/NR/93.1% NS

Magnifying NBI NR 97.8%/97.9%/NR/97.8% NS

No SA

Magnifying NBI �5 mm: 88
>5 mm: 30

For �5 mm:
93%/93.3%/93%/93.2%

92.7%

SA excluded

Magnifying NBI SA excluded 96.3%/78.1%/91.5%/90.1% NS

Near focus NBI SA excluded 98%/83%/97% NS

94%

NBI �5 mm:300 83.3%/91.7%/NR/86.7% NS

SA excluded

Endocytoscopy �10 mm:176 92%/79.5%/NR/89.2% NR

SA excluded

Endocytoscopy �5 mm: 139 89%/88%/76%/89% 96%

6-10 mm: 66

No SA

Endocytoscopy with NBI Mean 8.6 � 10.3 mm 84.5%/97.6%/82%/90% NR

No SA

Endocytoscopy with
NBI and MB

�5 mm: 475 Rectosigmoid:
NR/NR/96.4%/98.1%

NR

No SA

Pannala et al Artificial Intelligence in Gastrointestinal Endoscopy
analysis as the criterion for characterizing colorectal
lesions �3 mm when high-confidence optical evaluation
identifies an adenoma and supports the use of AI to help
decide the final pathologic diagnosis and resultant surveil-
lance colonoscopy interval.

Detecting malignancy in colorectal polyps. Accu-
rate optical diagnosis of T1 colorectal cancer (CRC) and
the level of submucosal invasion help determine the
optimal treatment approach for colorectal neoplasms.
Lesions suspected to be T1 CRC confined to the SM1
layer (<1000 mm) can be considered for endoscopic
resection by en bloc techniques with either endoscopic
mucosal resection (lesion diameter �2 cm) or endoscopic
submucosal dissection.45,46 Deep submucosal invasion
(1000 mm or more) requires surgery because of the
higher risk of lymph node metastasis.47 Current
www.VideoGIE.org
endoscopic assessment of depth of invasion consists of
HD-WLE with morphologic examination (eg, Paris classifi-
cation), NBI (selectively magnifying or near focus), and
EUS.48 These advanced imaging techniques are not
routinely used to assess colorectal polyps in Western
countries; thus, AI may provide useful guidance for
endoscopists in this setting.

A Japanese study evaluated an endocytoscopy-based
CAD system to differentiate invasive cancer from nonmalig-
nant adenomatous polyps; 5543 endocytoscopy images
(2506 nonneoplasms, 2667 adenomas, and 370 invasive
cancers) from 238 lesions (100 nonneoplasms, 112 ade-
nomas, and 26 invasive cancers) were randomly selected
from the database for ML.49 Sessile serrated lesions were
excluded. An SVM classified these training set images and
subsequently 200 validation set images (100 adenomas
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and 100 invasive cancers) to determine the characteristics
for the diagnosis of invasive cancer. The algorithm
achieved an accuracy of 94.1% (95% CI, 89.7-97.0) for
identifying invasive malignancy. Ito et al50 developed an
endoscopic CNN to distinguish depth of invasion for
malignant colon polyps. The study included 190 images
from 41 lesions (cTis Z 14, cT1a Z 14, and cT1b Z 13).
They used AlexNet and Caffe for machine learning, with
the resulting CNN demonstrating a diagnostic sensitivity,
specificity, and accuracy for deep invasion (cT1b) of
67.5%, 89.0%, and 81.2%, respectively.

Colonoscopy in inflammatory bowel disease
A CAD system evaluated the persistence of histologic

inflammation in endocytoscopic images obtained during
colonoscopy in patients with ulcerative colitis with an accu-
racy of 91% (83%-95%).51 A second study demonstrated
the ability of a deep neural network CAD system to
accurately identify patients with ulcerative colitis in
endoscopic (90.1% accuracy [95% CI, 89.2%-90.9%]) and
histologic remission (92.9% accuracy [95% CI, 92.1%-
93.7%]) based on computer analysis of endoscopic
mucosal appearance.52 No studies to date have evaluated
the use of CAD for dysplasia detection and grading in the
setting of surveillance colonoscopy for patients with
chronic colitis.

Improving quality and training in colonoscopy
AMRs during colonoscopy are partly attributable to

incomplete visual inspection of the colonic mucosal sur-
face area. AI is being developed to provide objective and
immediate feedback to the endoscopist to enhance visual
inspection of colonic mucosa, potentially leading to im-
provements in both polyp detection and colon cancer pre-
vention. A proof-of-concept study used an AI model to
evaluate mucosal surface area inspected and several other
quality metrics that contribute to adequacy of visual in-
spection during colonoscopy, including bowel preparation
scores, adequacy of colonic distention, and clarity of the
endoscopic view.53 A technically more-mature product
with validation of performance is awaited. A second study
used a deep CNN to assess colon bowel preparations;
5476 images from 2000 colonoscopy patients were used
to train the CNN, and 592 images were used for
validation using the Boston Bowel Preparation Scale as
the measure of bowel preparation quality.54 Twenty
previously recorded videos (30-second clips) were used
to assess the real-time value of the CNN, with a reported
accuracy of 89% compared with a low score among 5
expert endoscopists.

Analysis of wireless capsule endoscopy images
WCE is an established diagnostic tool for the evaluation

of various small-bowel abnormalities such as bleeding,
mucosal pathology, and small-bowel polyps.55 However,
the review and analysis of large amounts of graphic data
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(up to 8 hours of video and approximately 60,000 images
in a typical examination) remain major challenges. In a
blinded study of 17 gastroenterologists with varied WCE
experience who were shown WCE clips with variable or
no pathology, the overall detection rate for any
pathology was less than 50%.56 The detection rates for
angioectasias, ulcers/erosions, masses/polyps, and blood
were 69%, 38%, 46%, and 17%, respectively. Therefore,
effective CAD systems that assist physician diagnosis are
an unmet, yet critical, need.

The software that currently accompanies commercial
WCE systems is capable of performing both curation func-
tions (eg, removal of uninformative image frames such as
those that contain debris or fluid) to enhance reader effi-
ciency and rudimentary CAD functions (eg, using color
to locate frames with blood). Conventional handcrafted
CAD systems designed to detect one or more specific ab-
normalities such as bleeding, ulcers, polyps, intestinal
motility, celiac disease, and Crohn’s disease have been re-
ported but are not widely applicable. A detailed review of
these WCE CAD systems is beyond the scope of this article,
and the reader is referred to comprehensive reviews on
this topic.57-59 As noted previously, a major limitation of
conventional CAD systems is that each is designed to be
specific to an image feature, and thus their performance
is difficult to replicate in other datasets.57 Another
challenge in designing image analysis software for WCE is
that the resolution of images/video captured is of
relatively lower quality compared with those acquired
with high-definition endoscopes.

To overcome some of the limitations of the aforemen-
tioned CAD systems, there have been recent efforts to
use DL techniques such as CNN to analyze WCE im-
ages.57,60,61 Given the large number of images collected
with a relatively standard technique, WCE examinations
provide an opportunity to create large, annotated
databases, which are critical to developing robust CNN
algorithms.62 A proof-of-principle study evaluated the abil-
ity of a CNN system to label a 120,000 image WCE dataset
(100,000 image training set and 20,000 image validation
set).57 The CNN system correctly classified nonpathologic
image features such as intestinal wall, bubbles, turbid
material, wrinkles, and clear blobs with an accuracy of
96%. In another report using a dataset of 10,000 images
(2850 frames with bleeding and 7150 normal frames), an
8-layer CNN model had a precision value of 99.90% for
the detection of bleeding,60 compared with 99.87%63 and
98.31%64 reported previously on this dataset when using
conventional CAD systems. Similar DL systems have also
been reported to detect polyps,65 angioectasias,66 small
intestinal ulcers and erosions,67,68 and hookworms in
WCE images.69

The most comprehensive and promising WCE study to
date created a database of 113,426,569 small-bowel WCE
images from 6970 patients at 77 medical centers. The
CNN-based model was trained using 158,235 small bowel
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capsule endoscopy images from 1970 patients70 to identify
and categorize small-bowel pathology that included inflam-
mation, ulcers, polyps, lymphangiectasia, bleeding,
vascular disease, protruding lesions, lymphatic follicular hy-
perplasia, diverticula, and parasitic disease. The validation
dataset included 5000 small-bowel WCE videos interpreted
by the CNN and 20 gastroenterologists (250 videos per GI).
If there was discordance between the conventional analysis
and CNN model, the gastroenterologists re-evaluated the
video to confirm the final interpretation, which served as
the criterion standard. The CNN-based algorithm was supe-
rior to the gastroenterologists in identifying abnormalities
in both the per-patient analysis (sensitivity of 99.8% vs
74.57%; P < .0001) and per-lesion analysis (sensitivity of
99.90% vs 76.89%; P < .0001). Furthermore, the mean
reading time per patient for the CNN model of 5.9 �
2.23 minutes was much shorter compared with 96.6 �
22.53 minutes for conventional reading by gastroenterolo-
gists (P < .001).

These studies suggest that DL techniques have the po-
tential to serve as important tools to help gastroenterolo-
gists analyze small bowel capsule endoscopy images
more efficiently and more accurately; however, currently
no studies have used CNN to assess the impact on patient
outcomes.

EGD
Anatomical location and quality assessment. DL

algorithms have been designed to identify and label stan-
dard anatomical structures during EGD as an important
early step in accurately diagnosing various disease states
of the upper GI tract. In addition, CNNs have been devel-
oped to evaluate whether images/video frames acquired by
the endoscopist are informative and to improve quality of
the examination by assessing for blind spots and deter-
mining the proportion of mucosal surface area examined.
A CNN algorithm used a development dataset of 27,335 im-
ages and independent validation set of 17,081 images to
broadly classify the anatomical location of images obtained
on upper endoscopy into larynx, esophagus, stomach (up-
per, middle, or lower regions), or duodenum.71 The
demonstrated accuracy was 97%.

A single-center study developed a real-time quality
improvement DL system termed WISENSE, which iden-
tifies blind spots during EGD and creates automated pho-
todocumentation.72 The system was developed by
combining a CNN algorithm with deep reinforcement
learning, a newer DL technique designed to solve
dynamic decision problems. After development, testing,
and validation, the algorithm was applied in a single-
center randomized controlled trial of 324 patients under-
going EGD performed by experienced endoscopists. Use
of WISENSE reduced blind spot detection from 22.46%
to 5.86% (P < .001), increased inspection time, and
improved completeness of photodocumentation. The
lesser curve of the middle upper body of the stomach
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was the anatomic site where the algorithm aided most
with blind spots. In a prospective, single-blind randomized
controlled trial (n Z 437) from the same institution,
the additional benefit of using an AI algorithm for blind
spot detection was evaluated among patients undergoing
unsedated ultrathin transoral endoscopy, unsedated con-
ventional EGD, and sedated conventional EGD.73 The
blind spot rate of the AI-assisted group was lower than
that of the control group among all procedures; the con-
ventional sedated EGD combined with the AI algorithm
had a lower overall blind spot rate (3.42%) than ultrathin
and unsedated endoscopy (21.77% and 31.23%, respec-
tively; P < .05).

Diagnosis of Helicobacter pylori infection. Gastric
cancer is prevalent worldwide, and H pylori infection is a
leading cause. Although not routinely performed in West-
ern countries, endoscopic diagnosis of H pylori infection
based on mucosal assessment is an important component
of gastric cancer screening in Asia. This process is time
consuming because it requires the evaluation of multiple
(w50-60) images and is associated with a steep learning
curve. AI may be a useful tool to improve physician diag-
nostic performance for the diagnosis of H pylori infection
based on pattern recognition in endoscopic images.

A 22-layer CNN was applied on a training dataset of
32,208 white light (WL) gastric images (1750 patients)
from upper endoscopy and a prospective validation set
of 11,481 images (397 patients) and compared to a blinded
assessment by 33 gastroenterologists with a broad range of
experience.74 The CNN was noted to have a diagnostic
accuracy for H pylori detection similar to expert
endoscopists, but 12.1% higher than beginner
endoscopists. The authors reported an accuracy,
sensitivity, and specificity of 87.7% (95% CI, 84-90.7),
88.9% (95% CI, 79.3-95.1), and 87.4% (95% CI, 83.3-90.8),
respectively, when the CNN was given the anatomic
location of the images. Another study evaluated the role
of a similar CNN architecture in H pylori diagnosis on
screening endoscopic images of the lesser curve of the
stomach obtained during transnasal endoscopy, using a
more limited dataset of 179 images (149-image develop-
mental set and 30-image validation set); the sensitivity
and specificity were both 86.7% for the algorithm.75 A
CNN algorithm based on gastric mucosal HD-WLE appear-
ance was applied to a study population (nZ 1959 patients;
8.3 � 3.3 images per patient; 56% H pylori prevalence rate)
undergoing EGD and gastric biopsy. By using archived
endoscopic images, the CNN achieved an H pylori diag-
nostic accuracy of 93.8% (95% CI, 91.2-95.8).76

One of the challenges in improving the accuracy of
endoscopic diagnosis is the differentiation between gastric
mucosal changes due to active H pylori infection versus
eradicated infection. Using a CNN model on gastric endo-
scopic images (n Z 98,564), Shichijo et al77 categorized
patients as negative, positive, and eradicated with an
accuracy of 80%, 48%, and 84%, respectively. Given that
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the patterns of H pylori gastritis are different in Western
(antral involvement) and Eastern countries (corpus
involvement), these algorithms are likely to be specific to
the population in which they were studied.74

Furthermore, given the accuracy and widespread
availability of breath testing and stool antigen testing for
active H pylori infection in Western countries, the
potential clinical utility of this DL application remains
uncertain.

Diagnosis of gastric cancer and premalignant
gastric lesions. Several studies have evaluated the role
of CNN algorithms to improve the detection of gastric can-
cer and premalignant conditions such as chronic atrophic
gastritis and gastric polyps. One report described the
development and evaluation of a CNN for the diagnosis
of gastric cancer from endoscopic images.78 The training
set comprised 13,584 images of gastric cancer; the
algorithm was validated on an independent set of 2296
images of gastric cancer and normal areas of the stomach
derived from 77 lesions in 69 patients. In 47 seconds, the
CNN was able to identify 71 of 77 lesions accurately
(sensitivity 92.2%), but 161 benign lesions were
misclassified as cancer (positive predictive value of 31%).
The 6 missed cancers were all well-differentiated cancers
that were superficially depressed. Gastritis associated
with mucosal surface irregularity or change in color tone
was noted in nearly half of false-positive lesions. In another
study, a CNN algorithm was designed to evaluate the depth
of invasion of gastric cancer based on preoperative WLE
images (developmental dataset 790 images, testing set
203 images) among a group of patients who underwent
surgical or endoscopic resection.79 Compared with
human endoscopists, the CNN system was able to
differentiate early gastric cancer from deeper submucosal
invasion with a higher accuracy (by 17.25%; 95% CI,
11.63%-22.59%) and specificity (by 32.21%; 95% CI,
26.78-37.44). Other CNN systems have been developed
for detection of gastric polyps80 and chronic atrophic
gastritis from images of the proximal stomach81 and
distal stomach.82

An algorithm to detect gastric and esophageal
cancer was developed based on a dataset of 1,036,496
images from 84,424 individuals and validated on both an
external retrospective dataset (28,663 cancer and 783,876
control images) and prospective dataset (4317 cancer
and 62,433 control images).83 This system, named the
Gastrointestinal Artificial Intelligence Diagnostic System
by the investigators and provided to participating
institutions through a cloud-based AI platform, was tested
in a multicenter, case-control study of 1102 cancer and
3.430 control images from 175 randomly selected patients
and compared to the performance of human endoscopists.
Diagnostic accuracy of the system was >90% in all datasets;
sensitivity was similar to that of expert endoscopists (0.942
[95% CI, 0.924-0.957] vs 0.945 [95% CI, 0.927-0.959]; P >
.05) and superior to trainee endoscopists (0.722; 95% CI,
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0.691-0.752; P < .001). The authors propose that this sys-
tem could be used to help nonexpert endoscopists
improve detection of GI cancers.

Evaluation of esophageal cancer and dysplasia.
CAD studies based on image analysis features for the endo-
scopic diagnosis of esophageal squamous cell neoplasia60

and Barrett’s neoplasia61,62 have used DL algorithms to
enhance the detection of esophageal dysplasia and
cancer. A CNN algorithm was developed to detect
esophageal cancer (squamous and adenocarcinoma) on
stored endoscopic WL and NBI images, using 8428
training images from 384 patients and a test set of 1111
images from 49 patients and 50 controls.84 The majority
of the cancers in the test set were mucosal (T1a, 82%)
and squamous cell histology (84%). The algorithm had a
comprehensive sensitivity of 98% when evaluating both
WL and NBI images; the sensitivity when evaluating only
WL or NBI images was 81% and 89%, respectively. The
positive predictive value was 40%, with the majority of
false positives resulting from shadows or normal
anatomic impressions on the esophageal lumen.

Endoscopic detection of dysplasia in Barrett’s esoph-
agus (BE) is challenging. De Groof et al85 developed a
DL CAD system trained on 1704 high-resolution WLE im-
ages from 669 patients with nondysplastic BE or early
neoplasia, the latter defined as high-grade dysplasia or
early esophageal adenocarcinoma (stage T1). They subse-
quently validated the CAD system on 3 independent data-
sets totaling 377 images. For the largest dataset, the CAD
system correctly classified images as containing neoplastic
BE (113 of 129 images) or nondysplastic BE (149 of 168 im-
ages) with primary outcome measures of accuracy, sensi-
tivity, and specificity of 89%, 90%, and 88%, respectively.
The CAD system also achieved greater accuracy (88% vs
73%) than any of the 53 general endoscopists. The system
also correctly identified the optimal site for biopsy of the
dysplastic BE in 92% to 97%, a performance that was
similar to that of expert endoscopists. A real-time applica-
tion of this CAD system during live EGD was reported in
a small pilot study of 20 patients with nondysplastic BE
(n Z 10) and confirmed dysplastic BE (n Z 10). The
CAD system accurately identified Barrett’s neoplasia at a
given level in the esophagus with 90% accuracy compared
to expert assessment and histology.86 A second group
developed a CNN program that detected early
esophageal neoplasia in real time with a high level of
accuracy.87 The CNN analyzed 458 test images (225
dysplasia and 233 nondysplastic) and correctly detected
early neoplasia with a sensitivity of 96.4%, specificity of
94.2%, and accuracy of 95.4%.

Volumetric laser endomicroscopy (VLE) is a wide-field
advanced imaging technology increasingly being used for
evaluation of dysplasia in BE. VLE requires the user to
view and analyze a large dataset of images (1200 images
in cross-sectional frame over 90 seconds from a 6-cm
segment of the esophagus) in real time. To address this
www.VideoGIE.org
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challenge, a CAD system was developed that used 2 spe-
cific image features (loss of layering and increased subsur-
face signal intensity) that are part of clinical algorithms for
dysplasia identification.88 In a dataset of VLE images with
histologic correlation, the sensitivity and specificity of the
algorithm were 90% and 93%, respectively, compared
with 83% and 71% for experts. An AI-based, real-time image
segmentation system added a third VLE image feature (hy-
poreflective structures representing dysplastic BE glands)
to the 2 previously established image features predictive
of dysplasia. The VLE regions of interest were marked by
the AI algorithm with color overlays to facilitate study
interpretation.89

Analysis of EUS images
CAD based on digital image analysis has been reported

in the EUS evaluation of pancreatic masses, especially to
differentiate pancreatic cancer (PC) from chronic pancrea-
titis (CP). However, there are limited studies in this area
and no reports on the use of DL in the analysis of EUS im-
ages. In a single-center Chinese study, representative EUS
images from 262 PC patients and 126 CP patients were
used to develop an SVM algorithm based on pattern classi-
fication.90 On a random sample of images from the same
dataset, the model had a sensitivity and specificity of
96.2% and 93.4%, respectively, for the identification of
PC. In a similar study from a different institution in
China, the authors developed an SVM algorithm to
evaluate EUS images from 153 PC, 43 CP, and 20 normal
control patients.91 Using a similar methodology of
dividing the images into training and validation sets, the
authors tested the performance characteristics of the
algorithm after 50 trials and reported a sensitivity and
specificity of 94% and 99%, respectively. Two earlier,
smaller studies evaluated the role of digital image
analysis using a handcrafted ANN model based on texture
analysis or grayscale variations to differentiate PC from
normal pancreas or CP, achieving similar results.92,93

CAD of EUS images when using ML has also been used in
the differentiation of autoimmune pancreatitis from CP.94,95

Zhu et al94 evaluated the role of a novel image descriptor
(local ternary pattern variance) as an additional tool to
refine standard textural and feature analyses and then
constructed an SVM algorithm based on those parameters.
ML by the algorithm was conducted by using 200
randomized learning trials on a set of EUS images from
patients with presumed autoimmune pancreatitis (n Z
81) based on the HiSORT criteria96 and CP (n Z 100).
The sensitivity and specificity of the algorithm were
reported at 84% and 93%, respectively.

EUS elastography has been used to characterize pancre-
atic masses and to differentiate PC from CP and benign
from malignant lymph nodes.97 In a study of 68 patients
with normal pancreas (n Z 22), CP (n Z 11), PC (n Z
32), and pancreatic neuroendocrine tumors (n Z 3),
investigators calculated hue histograms derived from
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dynamic (video) sequences during EUS elastography.95

They subsequently built an ANN algorithm that used a
multilayer perceptron model to evaluate these dynamic
sequences to differentiate PC from CP. The model
achieved an accuracy of 95% in differentiating benign
versus malignant pancreatic masses and 90% for mass-
forming pancreatitis versus PC. The authors further evalu-
ated this technique in a prospective, multicenter study (13
academic centers in Europe) of 258 patients (211 PC and
47 CP patients).98 In this study, 3 videos of 10-second dura-
tion were collected during EUS elastography; processing
and analyses were performed in a blinded manner at the
primary institution. Patients either had a positive cytologic
or surgical pathologic diagnosis or had clinical follow-up
for 6 months. The algorithm had a sensitivity and speci-
ficity of 88% and 83%, respectively, with a positive predic-
tive value of 96% and an NPV of 57%. The authors
concluded that future real-time CAD systems based on
these techniques may support real-time decision- making
in the evaluation of pancreatic masses.
AREAS FOR FUTURE RESEARCH

Applications for AI in GI have been the subject of research
for the past 2 decades, and these potentially transformative
technologies are now poised to generate clinically useful
and viable tools. The most promising applications appear
to be real-time colonic polyp detection and classification.
DL technologies for polyp detection with demonstrated
real-time capability must be prospectively assessed during
actual colonoscopies to confirm performance. Similarly, AI
must be further evaluated for real-time lesion characteriza-
tion (eg, neoplastic vs nonneoplastic, deep vs superficial sub-
mucosal invasion). The effect of AI on relevant clinical
endpoints such as ADR, withdrawal times, PIVI endpoints,
and cost effectiveness remains uncertain. However, AI-
based applications that will have the potential to analyze
the endoscopic image and recognize landmarks to enable
direct measurement of quality metrics and to supplement
the clinical documentation of the procedure appear likely.

Development and incorporation of these technologies
into the GI endoscopy practice should also be guided by
unmet needs and particularly focused on addressing areas
of potential to enhance human performance through the
use of AI. These could include applications in which a large
number of images have to be analyzed or careful endo-
scopic evaluation of a wide surface area (eg, gastric cancer
or CRC screening) needs to be performed, in which AI has
the potential to increase the efficiency of human perfor-
mance. Although investigators have typically sought to
design CAD algorithms with high sensitivity and specificity,
in practice highly sensitive but less specific CAD could be
used as a “red flag” technology to improve detection of
early lesions with confirmation by advanced imaging mo-
dalities or histology.
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One of the critical needs to develop and test DL systems
is the availability of large, reliably curated image and video
datasets, as few such databases exist. Although this may
require effort and cooperation among stakeholders, their
availability would accelerate AI research in endoscopy.
The evolution of current endoscopes and image proces-
sors into “smart” devices that are capable of analyzing
and processing endoscopic data has potential. Critical
appraisal of the improvement in patient outcomes, cost-
effectiveness, safety, and the changes in clinical practice
required to incorporate and implement these tools is
required. Adopting these technologies will be associated
with some cost burden; a corresponding reimbursement
for their use will undoubtedly affect the rate of incorpora-
tion into clinical practice. Attention to the pitfalls and suc-
cesses of the incorporation of AI in other fields (eg,
radiology) may yield valuable lessons for its integration in
GI endoscopy.
SUMMARY

Rapid developments in computing power in the past
few years have led to widespread use of AI in many aspects
of human-machine interaction, including medical fields
requiring analysis of large amounts of data. Although there
has been active research in image analysis and CAD for
many years, the recent availability of DL techniques such
as CNN has facilitated the development of tools that prom-
ise to become an integral aid to physician diagnosis in the
near future. These techniques are being explored in
various aspects of GI endoscopy such as automated detec-
tion and classification of colorectal polyps, WCE interpreta-
tion, diagnosis of esophageal neoplasia, and pancreatic
EUS, with the intent of developing real-time tools that
inform physician diagnosis and decision-making. The wide-
spread application of DL technologies across multiple as-
pects of GI endoscopy has the potential to transform
clinical endoscopic practice positively.
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